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A new algorithm is proposed for reducing non-autonomous Hamiltonian systems to normal Birkhoff form. The criterion for the 
normal form is the condition that the vector fields of the perturbed and unperturbed parts of the system should commute. The 
invariant character of the criterion enables the system to be normalized in a unified way, without first simplifying the unperturbed 
part and without distinguishing between resonance and non-resonance, or autonomous and non-autonomous, cases. The whole 
algorithm reduces to a one-dimensional recurrence formula. The result is obtained by using the Campbell-Hausdorff formula 
for the ring of asymptotic forms, as well as the solution of a homological equation in the form of a quadrature. Three examples 
are considered to illustrate the various special features of the new algorithm. One of the examples is of interest for nuclear magnetic 
resonance theory. © 2002 Elsevier Science Ltd. All rights reserved. 

1. I N T R O D U C T I O N  

The method of local analysis of systems of ordinary differential equations is based on representing the 
system as a sum of two parts with different meanings. The first part is called the degenerate system (more 
frequently the generating or unperturbed system). The second part is called the perturbation. An  arbitrary 
small perturbation may lead to considerable changes in the behaviour of the system, even a qualitative 
change in the topology of its phase flow. This not only explains the term "degenerate system," but also 
makes local analysis meaningful, since otherwise there would be little point in taking small terms into 
account in the equations. 

One of the main methods of local analysis is the method of the Poincar6 normal form. If one is 
concerned with a Hamiltonian system, its Poincar6 normal form is related to the normal form of the 
Hamiltonian, which is known as the Birkhoff normal form [1]. The most compact definition of this form 
can be found in [2]. 

We will illustrate the nature of the definition using the example of the Hamiltonian of an autonomous 
conservative oscillatory system, represented in the neighbourhood of an equilibrium position in the form 

H ( x , y ) = i ~  ~,kxkyk + ~, hmlxmy I (1.1) 
k=l ra,l>O 

where x andy are complex combinations of coordinates and momenta, x = p  + iq, y = p  -iq,  the positive 
constants ~,~ have the meaning of frequencies of natural oscillations of the linear part of the system, 
whose Hamiltonian is written in diagonal form, and we have used the abbreviated notationx ~ = x~'l ... 
x~" in representing the Hamiltonian of the non-linear part. In this case we say that Hamiltonian (1.1) 
has the Birkhoff normal form if the non-linear part contains only terms for which 

Z (mk - lk)~-k = 0 (1.2) 
k 

Such terms are known as resonance terms. The definition in the non-autonomous case is more 
complicated. 

If the Hamiltonian of the non-linear part of the system does not have this form, it may be brought 
to the appropriate form by using canonical polynomial changes of variables and choosing the coefficients 
in such a way that non-resonance terms vanish. 

There are two known methods of constructing such changes of variables: one based on using generating 
functions (this was Birkhoff's approach), and another in which the generating functions are replaced 
by Lie generators [3]. The second method is more convenient, since it does not require the inversion 
of power series, which is necessary in the case of generating functions. 

tPrikl. Mat. Mekh. Vol. 66, No. 3, pp. 356--365, 2002. 
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The method of Lie generators is sometimes referred to as Hori's method. However, it should be noted 
that Hori himself used the method to look for an additional first integral [4], rather than to normalize 
Hamiltonians. The use of Lie generators to form recurrence normalization procedures was implemented 
in [5].# 

2. I N V A R I A N T  D E F I N I T I O N  O F  T H E  B I R K H O F F  N O R M A L  F O R M  

The definition of the normal form outlined above, based on using complex combinations of generalized 
coordinates and generalized momenta and reducing the unperturbed part to diagonal form, compares 
favourably with other definitions known from the literature (such as those making direct use of canonical 
variables or of action-angle variables). This definition does not involve a separate description of the 
resonance and non-resonance cases, thus achieving greater compactness. 

The definition may be made even more compact if it does not depend at all on the specific variables 
in terms of which the original Hamiltonian is written. To that end, we need only appeal to a well-known 
general property which characterizes the normal form irrespective of the way it is defined: the terms 
in representation (1.1) satisfying condition (1.2) and called "resonance terms" cannot be eliminated 
by any canonical transformation; these terms will be first integrals of the unperturbed system. 

It is obvious that this property does not depend on the specific variables in terms of which the system 
is described; it is a fundamental topological property of the normal form, indicating that the vector 
fields of the perturbed and unperturbed systems commute. It is this property that is most naturally taken 
as the definition of the normal form. The actual form of the resonance terms for a specific choice of 
variables will then be a corollary of the definition. 

Definition. The perturbed Hamiltonian 

' H(t,q,p)= Ho(t,q,p)+H,(t,q,p) (2.1) 

has the Birkhoff normal form if and only if the perturbation is a first integral of the unperturbed part: 

bH, / bt + {H 0, H,} = 0 (2.2) 

In what follows, with the aim of reducing an arbitrary perturbed Hamiltonian to such a form, we will 
additionally require that the Hamiltonian be a periodic function of time and that the general solution 
of the unperturbed system be known and conditionally periodic. 

The above definition may be made even more compact if we assume the time to be a new generalized 
coordinate: q0 - ~ t  (where ~.0 is the quotient of 2r~ by the period) and introduce the momentum P0 
conjugate to this coordinate, so that the Hamiltonian may be rewritten as H ---) ~.0P0 + H. Then the 
definition of the normal form as {H0, H,} = 0 will be common to both the autonomous and non- 
autonomous cases. 

The above definition will be convenient in what follows in formulating the normalization algorithm. 
Like the definition itself, the algorithm will be invariant to the variables used. 

3. THE NORMALIZATION A L G O R I T H M  

We shall seek a canonical transformation which reduces the Hamiltonian 

H(q,p) = Ho(q,p)+ H,(q,p) 

to normal form with the aid of Lie generators. 
A Lie generator is defined as the operator of a certain auxiliary Hamiltonian system whose phase 

flow induces a single-parameter family of canonical transformations, defined in the same phase space 
in which the Hamiltonian to be transformed is defined. The Hamiltonian of this auxiliary system is called 
the generating Hamiltonian. 

Let G(q, p) be the required generating Hamiltonian. This means that the solution of the Cauchy 
problem 

dpld'~=~G/~p, dp/dx=-bGI3q; q(0)=u, p(0)=u 

tSee also: MARKEYEV, A. E and SOKOLOVSKII, A. G., Some computational algorithms for the normalization of 
Hamiltonian systems. Preprint No. 31. Inst. Problem Mekhaniki Akad. Nauk SSSR, Moscow, 1976. 
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defines the required canonical transformations 

q = q ( x , u , v ) ,  p = p ( z , u , v )  

These transformations and their inverses may be written in terms of the following Lie series 

, t  2 ,!~ 2 

q = u +  xlu, G}+--~. { {u,G},G}+ .... p = v +  xlu,G}+--~. {{v,G},G}+ .... 

17 2 ,C 2 
u=q- 'c{q ,G}+-~.  { {q,G},G}-. . . ,  v = p- 'c{p,  GI+~ .  { lp, GI ,G}- . . .  

The arguments q andp  in the generating Hamiltonian G(q,p)  in the formulae for the transformations 
themselves have been replaced by u and v: G(u, v). The function G itself is the same in both cases. 

The transformed Hamiltonian is also defined in terms of the initial Hamiltonian by a Lie series 

m , c  2 

H (u, v ) = H(u, v )+'C{H,G} +-77.-{ {H, G}, G} + ... (3.1) 

In what follows we shall assume that the smallness of the perturbation is formalized by the presence 
of a small parameter  e as a factor before it 

H( q, p) = Ho(q, p) + ~J't,(q,p) 

In real problems the small parameter  may appear in a natural way as an actual parameter  which is 
indeed small in the sense of the problem being solved. If there is no such parameter, it may be introduced 
by means of a similarity transformation: q ~ eq, p ---) ~q, where e is a scalar parameter  considered in 
the neighbourhood of zero. 

Let  us assume that the generating Hamiltonian is being sought as a function of e: G(q,p, e). We define 
an asymptotic form of  the kth order of G(p,  q, e) to be any function Gg(p, p, e) that differs from the 
exact one by small terms of higher order than ek: Gk = G + o(ek). An  analogous definition is borne in 
mind for the required Hamiltonian in normal form, as well as for the initial Hamiltonian if the small 
parameter  was introduced by way of a similarly transformation. 

We recall the basic properties of the ring of asymptotic forms: 
1) addition is defined by (G" + G")~ = G~ + G~; the zero of the ring ofk-th order asymptotic forms is any function 

of order greater than k: 0~ = o(ek); 
2) multiplication is defined by (G'. G")k = G'~ • G~; the unit is lk = 1 + o(e g) (the ring of asymptotic forms is 

unitary); 
3) displacement along the scale of orders: (g .  G)k = gGk-s (k - s I> 0). 

In what follows we formulate the problem of successively determining the asymptotic forms of the 
unknown Hamiltonians ~q and G, beginning with the lowest-order ones. To that end we rewrite formula 
(3.1) for the successive asymptotic forms, identifying the parameter of the generating Hamiltonian group 

with the small parameter  e: x = e. As a result we obtain a chain of finite series 

H--o(U, v)= Ho(u, v), ~(u, v)= H~(u, v)+~lHo,Co} 

m , t  2 

H2(u, v)= Hz(U, v)+'c{HI,GI}+'~. { {Ho,Go},G o} .... 

,[k 

.... Hk(u, v)= Hk(u, v)+ X{Hk_I,G~_I}+...+--~. {~{ Ho,Go},G o} .... } .... 
k - times 

(3.2) 

The aforementioned properties of the ring of asymptotic forms have been used. 
We again use the property of the displacement of order  to transform the following bracket 

{H k_ ], Gk_;} = {H o , G~_]} + {Hk_ ] - H o , Gk_i} = {H o, Gk_1} + {Hk_ t - H o, G k_2 } 

The last equality follows from the fact that Hk_ 1 - H 0 = e. Taking this representation into account, 
we rewrite (3.2) as 
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H0=H0, H~=x{H 0, G0I+H I 

"n2 = x{Ho,O~}+ x{H~ - H0,G 01 + ~ {  {/40,O01,O0} + H2 .... 

. . . .  H k = X { H o , G k _ I } + R k  (k>l )  .... 

(3.3) 

where Rk denotes a function containing only asymptotic forms of order lower than Gk-1 

k i ' T "  

R k = H ,  +x{Hk_ I -Ho ,Gk_2 }+  ~'. " ~ . t { . . . [ H k _ i , G k _ i } , G k _ i }  . . . .  } 
i=2 t: ~./-times 

(3.4) 

The first approximation of our method for reducing the Hamiltonian H to normal form involves finding 
H1 and Go from the second equation of system (3.3). If attention is being confined to this approximation, 
the asymptotic form Go of the generating Hamiltonian need not be constructed, since it is needed to 
find the second approximation. 

The complete construction of the first approximation proceeds as follows. Together with the equation 
of the first approximation, we consider the normal form criterion 

- -  N 

HI = X I H o , G o I +  H t, {H0,Hi}=0 (3.5) 

This is a system of two first-order linear partial differential equations for the two functions H~(u,  v) 
and Go(u, v). Systems of this type are known as homological  [6]. 

We shall present the solution of the homological system in explicit form. To do so we write the general 
solution 

of the generating system 

q = q(t, u, u ), p = p(t, u, u ) (3.6) 

dq / at = aHo / ap, @ / at = -aHo / aq 

with in i t ia l  condit ions q(O) = u , p ( O )  = v. 
If solution (3.6) is substituted into system (3.5) (replacing the variable u by q~, u, v) and the variable 

v b y p ( t ,  u, v)) ,  the second equation becomes an identity. In the first equation, H1 remains unchanged, 
since H1 is by definition a first integral of the generating system. The Poisson bracket along trajectories 
of the generating system is equal to the total derivative of Go with respect to time 

I/4o,601 = dGo / dt 

Therefore, integrating both sides of this equation with respect to time, we obtain 

t 

S HI [q(t, u, v ), p(t, u, u )]dt = t'H I + ~[Go(u, u ) - Go(q(t,  u, u )p( t ,  u, u ))] (3.7) 
0 

We have thus shown that integration of the first-order asymptotic form of the given Hamiltonian with 
respect to time along trajectories of the generating system yields the first-order asymptotic form of the 
normal form as the coefficient of t, and the first-order asymptotic form of the generating Hamilt~nian 
as the coefficient of x, which does not depend on time. 

We now proceed to the second approximation. Integrating the third equation of system (3.3) with 
respect to time along trajectories of (3.6), we obtain 

, ~2  

i (x{ H~ - H0, Go } + T { {H0, Go }, Go } +//2)dt = tH--2 + xG~ - xGI (t) 
0 

and so on. 
An arbitrary approximation is defined by the following recurrence formula 

t 

R~ [q(/, u, v ), p(t, u, u )]dt= t'H k + ~Gk_ t (u,u ) - xGk_ l [q(t, u, u ), p(t, u, u )] (3.8) 
0 
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The function Rk(U, v) is given by formula (3.4) and is uniquely defined by the previous approximation. 
Thus, in any approximation, the coefficient of t on the right of equality (3.8) is the required asymptotic 

form of the normal form, and the coefficient of x, which is independent of time, is the corresponding 
asymptotic form of the generating Hamiltonian. 

Remark. The function Gk-l(u, v) in formula (3.8) may also be constructed by direct computation, as follows. As 
established, the asymptotic form of the normal form Hk is the mean value of the function Rk over time along solutions 
of the generating system: Hk = (Rk). Therefore, in order to find the asymptotic form of the generating Hamiltonian 
Gk_l, we need only solve the equation x{H0, G~_I} +/~k = 0, where/~k = Rk - (Rk) is the increment to the mean. 
This equation may be solved as follows (see, e.g., [7]). Substitute the solutions of the generating systemt~ = OHo/Ov, 
b = -OHo/OU in the variables u and v, that is, u = q0(t, u0, to) and v = ¢(t, u0, v0), into the expression for/?k(U, v) 
and calculate 

N~(t, Uo, Vo) = j" k,[~p(t, Uo, Vo),C(t, Uo, Vo)]dt. 

After that, solving for u0 and v0 in terms of u and v, find 

Gk_~ (u, v ) = --(1/ 'r)Nk [t ,~p(-t ,  u, v ), ~ - t ,  u, v )] 

It is easily shown that the function thus obtained is indeed not explicitly dependent on time. 

4. S P E C I A L  F E A T U R E S  OF T H E  CASE 
OF A N O N - A U T O N O M O U S  H A M I L T O N I A N  

In the non-autonomous case, the Hamiltonian has the form (2.1) and, as already indicated in Section 
2, the algorithm may be applied after adding an impulse adjoint to the time t, denoted by T, to the 
Hamiltonian 

H(t, T,q,p) = T+ Ho(t,q,p)+ H.(t,q,p) (4.1) 

For convenient application of the formulae obtained in Section 3 to specific examples, it is better  to 
denote the variables t and T by q0 and P0. 

Let  us assume that Hamiltonian (4.1) has already been reduced to normal form, that is, Eq. (2.2) is 
true for (2.1). A non-autonomous Hamiltonian in normal form is also non-autonomous. The same may 
be said of the corresponding Hamiltonian system. However, the system has an important property, which 
considerably simplifies its analysis compared to non-autonomous systems of general form. 

Theorem. If a system with Hamiltonian (2.1) satisfies the normal form condition, then, in order to 
construct the general solution of the corresponding Hamilton equations q = Hp,p = -nq, it is sufficient: 

a) to find the general solution q = q(t', u', v ' ) ,p = p(t', u', v') of the generating system 

,~ = 0n0  / Op, .o = -0H0 / 0q 

b) to find the general solution q = q(t', u", v"), p = p(t, u", v") of the system defined only by the 
perturbation 

t~ = OH. / 0p, /~ = -OH. / 0q 

provided that the time occurring explicitly in the Hamiltonian in this system is equated to zero: H, (0 ,  
p, q). 

The general solution of the initial non-autonomous system will then be represented by the composition 
in any order of the solutions thus obtained (instead of the arbitrary constants in the solution of the 
second system one substitutes the solutions of the first, and vice versa). 

Proof. We shall use the extension of the Hamiltonian to the autonomous form (4.1) and write the 
Hamiltonian equations as 

i= l ,  T= OH o OH, =0H o+0H,, OH o OH, 
Ot O p '  ~ Op Op P =  Oq Oq 

with initial condition t(O) = O. 
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By the condition { T + H0, H .  } = 0, the general Solution of this system is the composition of solutions 
of the following systems (a proof may be found, e.g. in [7]) 

i=l,  T= 0H°ot' c ) = ~ p °  , /~=-0H°oq, t(0)=0 (system 1) 

i = 0 ,  7"= 0H. ~)H. OH. 0t ' q = - ' ~ p '  P= -0" ' q - '  t (0 )=0  (system2) 

Integrating the first equations in both systems, substituting the results thus found, t = t for the first 
system and t = 0 for the second, into the other equations, and carrying out the required composition 
after their solution, one obtains the property stipulated in the theorem. 

5. E X A M P L E S  

The following examples will illustrate various features of the proposed normalization algorithm. 
In the first example, which is familiar from the textbook literature, the technique of constructing two 

approximations is illustrated. It easily demonstrates the difference between this technique and the technique used 
in the known algorithms• 

Example 1. The Duffing equation 

~+q+q3 =0 

By making the substitutionx = q - ip, y = q + ip, the Hamiltonian corresponding to this equation may be reduced 
to the form 

H=i(xy+E(x+y)4/32), e=l  

First approximation of the normal form. The trajectories of the generating system, whose Hamiltonian is H0 = 
/xy, are x = ue it, y = ve -it. Integrating the Hamiitonian along them, we find 

l t . "] 

I Hdt=i[ [uu +~-~--(ue a -t-oe-i') 4 jdt= 
0 ~/  32 

=ituu+~2(lu4e4it+2u3ve2it+6itu2u2-2uv3e-2it-lu4e4it)+'cG 0 ('~ = I~) 

G ! (1 4+2u3u_2uu3_lu4 ) 
0 

The first-order asymptotic form of the normal form is the coefficient of t 

"HI = i(uu +-~'tu 2u 21 

The first approximation Go for the generating Hamiltonian is the coefficient of ~, which does not depend on 
time. 

Second approximation of the normal form. We calculate R 2 

R 2 = H + x I H  - Ho,Go} +-~-{ { H o , G o } , G o } ,  

We find 

H -  H 0 = ~2 (u+u )4 

{Ho.Go} = - 3-~(u 4 +4u3u +4uu 3 +U 4) 

We substitute H - H0 and (H0, Go} into the expression for Re, and then integrate R2(u, v) along trajectories of 
the generating system u ~ u exp it, v ~ v exp(-it). The coefficient of t in the expression thus obtained is 

H'--2=iluu+3"~u2u216 -'~-~17X2u3u3]) 
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This expression, taken at z = 1, is the normal form of the Hamiltonian of a Duffing oscillator in the second 
approximation. Since we are confining our attention to this approximation, the function G1, which is needed to 
construct the third approximation, will not be shown. 

The next example will illustrate the fact that the proposed normalization algorithm does not require the 
Hamiltonian to be in polynomial form. All existing algorithms work with polynomial Hamiltonians. 

Example 2. A Hamiltonian in the form of a rational function. Suppose the Hamiltonian to be normalized has the 
form 

H = l ( p 2 + q 2 ) +  ~. 
I+q  2 

The general solution of the generating system (e = 0) is 

q=ucost+vsint ,  p=-us in t+vcos t  

To construct the first approximation of the normal form, we need only integrate the Hamiltonian with respect 
to time, after first substituting into it the solution written out above 

i H(ucost+v sint ,-usint+v cost )dt=[l(u  2 +v2)+~.w]t+e.w[arctg(ws(t))-arctgs(t)]to; 
0 

I -us in t  +v cost 
w = s(t) = 

1+u 2 +v2 ' ucost+v sint 

This yields the first approximation of the normal form (the coefficient of t) 

HI =2("2+v2) +e" 

The first approximation of the generating Hamiltonian, which defines the canonical transformation reducing the 
initial Hamiitonian to this form, is the coefficient of e, which is independent of t 

t" wv v 
G O = - w [ a r c  t g - -~ -  - arc tg ~-J 

The next example will illustrate the invariance of the algorithm with respect to the choice of the initial canonical 
variables in the Hamiltonian to be normalized. In all existing algorithms, the generating Hamiltonian must first 
be reduced to one of the elementary forms. In the algorithm proposed here this is not necessary. 

Example 3. A Lagrange top on a vibrating base. Consider the problem of the stability of a Lagrange top when 
the base is vibrating along the vertical axis. The problem of the dynamics of a Lagrange top on a base vibrating in 
a horizontal plane was considered in [8] in connection with the phenomenon of nuclear magnetic resonance (NMR). 

The vertical position of the top when in horizontal vibration becomes unstable when the vibration frequency is 
close to the frequency of the top's precessional oscillations. The NMR phenomenon, which is known in the literature, 
is a resonance of a precessional type. It is of interest to determine the conditions under which NMR of the second 
kind, that is, resonance of nutationai type, is possible. 

The Lagrangian describing the dynamics of small deviations of the top from the vertical may be written, e.g. in 
Krylov-Bulgakov angles 

L=2(Jc2 + v2)+{'h + A)(x~/" - J'y) + l(x 2 + y2)(l + 2kcos2ht) 

where h is the intrinsic angular momentum, A defines the frequency difference, and k is the intensity of vertical 
vibrations of the base. 

We will change to non-dimensional time t ~ t'/h, but retain the previous notation for the new time variable in 
what follows. The new Lagrangian will:be 

1 A 
L =/ ( .~2  +y2)+(1 +~)(xy_jcy)+e.(x 2 +y2)( i +2kcos2t), I~ = 2-'~" 8 = w 

2 h 

Assuming that the intrinsic angular momentum h is large, we shall assume that e and 8 are small parameters of 
the same order of magnitude. 

A Legendre transformation enables one to obtain a Hamiltonian H = H0 + H , ,  in which the unperturbed part 
and the perturbation have the form 

HO = l/~(X2 +y2 +p2 +p2)_Xpy +YPx 

H, = -8(xpy - YPx ) + ( x2 + y2 )[28 - e(l + 2k cos 2t)] 
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The relation between the generalized momenta and the initial phase variables is 

Px=JC-( I+~)Y,  p y = j ' + ( l + ~ ) x  

We recall that, according to the previous account, a non-autonomous Hamiltonian must be brought to autonomous 
form. In this case we must put 2t = q0 and add 2p0 to H0. 

The normalization procedure for the Hamiltonian H will be implemented without diagonalizing its 
unperturbed part H0. To that end, we first write down the solution of the generating system 

qo =2, k = p x  +y, Y = p y - x ,  Px = - x + p y ,  f ) y = - Y - P x  

which is 

qo = qo + 2t 

x = x'  + py + (x' - p~)cos 2t + (y' + p.~ )sin 21 

Y = Y' - Px - (x" - p'y)sin 2t + (y'  + p~)cos 2t 

Px = -Y '  + P'x - (x" - p'y)sin 2t + (y'  + p~ )cos 2t 

py = x'  + p~ - (x' - py)cos 2 t -  (y'  + Px)sin 2t 

The prime indicates the values of the appropriate functions at t = 0. 
Substituting this solution into the initial Hamiltonian, and then integrating it from 0 to t and singling out the 

coefficient of t, we obtain 

• 8 - 2 e .  e k ,  
~-= 2p 0 + l g +  + YPx - x p y  +~$(YPx - X p y ) + - - - - ~ g +  +--~r~_ cosq0 - ek (xpx  + ypy)sinqo 

g± =x 2 +y2 ±<px: +p~) 

(omitting the primes). We can now return to the original notation for the time, q0 = 2t. 
By the theorem formulated in Section 4, to investigate the stability of the vertical equilibrium position further, 

we need only consider the perturbed part of the normal form at the point t = 0 

H . - - . = t $ ( y p x _ x p y ) + _ ~ +  F_.k 
+T g- 

The characteristic polynomial of this linear system is 

~4 +2~+~2 +y2 =0; 'y+ =8 2 + [ 0 5 / 2 - e )  2 -e2k  2] 

whence we obtain the stability condition (8/2 - e) 2 > e2/~, which may be rewritten in terms of the original parameters 
as (Ah - 1) 2 > k 2. 

6. R E M A R K S  

1. The basic idea of the proposed algorithm was published [9] for autonomous systems in a more restricted 
formulation. 

2. The distinctive features of the new algorithm are: 
a) the sole condition defining the generating system is the existence of a known conditionally periodic general 

solution; 
b) the criterion of the normal form used in formulating the algorithm is the condition that the vector fields of 

the perturbed and unperturbed parts of the system should commute; 
c) the algorithm is invariant to the choice of initial phase variables in the Hamiltonian to be transformed; 
d) the resonance, non-resonance, autonomous and non-autonomous cases are considered within a uniform 

framework; 
e) the algorithm does not require the Hamiltonian to be in polynomial form; 
t = ) the algorithm is based on the properties of the ring of asymptotic forms rather than on operations with series, 

this has enabled us to avoid such schemes as Newton polyhedra and to express the final result as a single recurrence 
formula; 

g) the solution of the homological equation is obtained in the form of a quadrature. 
3. Doubtful terms may appear in the process of computing the asymptotic forms. This is easily avoided if any 

terms of higher order than that of the asymptotic form being computed are equated to zero during the computations. 
4. Reducing the algorithm to a quadrature computation does not restrict its possibilities but, on the contrary, 

extends them. If one assumes that the Hamiltonian to be transformed is written in polynomial form (as is indeed 
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done in other known algorithms), one has to integrate trigonometric harmonics in positive integer powers, which 
at once reduces to finite formulae. 

5. In the near-resonance case, one encounters the problem of small denominators. If the spectrum of the solution 
of the generating system does not depend on the initial data, the case has to be converted into one of exact resonance 
by removing the small terms from the generating part to the perturbation. If the spectrum depends on the initial 
data, then, as usual, the situation is more comphcated and one has to dlstmgmsh cases of the piercing of the 
resonance surface and those of sticking to it. 

6. Further simplifications of the algorithm are possible. Using the equation of the first approximation in system 
(3.3), we obtain 

• tIHo,Go} = ~'= _ n I 

This expression may be used to reduce the number of Poisson brackets to be computed in the last term in formula 
(3.4): 

• { ,~(  H o , G o I , G o } . . . }  = "t k - I  
" i-tim=~ ~ i - I -  ~,i,-o~H=-H='G°I'G°I' ' '} 

For example, when constructing the second approximation, the resolvent R2 takes the form 

R 2 = X{I~(H" I + H I ) -  Ho,Go}+H 2 
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